Quick Start Guide

Oscar Trek GNSS Receiver

> Visual Positioning

I

Ą

Note: Please check each item according to the item list first to confirm that all the accessories are correct for the purchased kit.

Install the radio antenna before switching the radio transceiver to transmit mode, or the radio transceiver may be damaged due to overheating. The energy to be transmitted cannot be emitted out without the antenna, which may cause the temperature rise and overheat of the radio module.

This Quick Start Guide introduces how to start using visual positioning quickly, the detailed introduction and operations of Oscar Trek refer to User Manual for Oscar Trek GNSS Receiver.

Figure 0.1 Oscar Trek GNSS Receiver

The four steps of visual positioning are outlined below: 1.Prepare; 2.Initialization; 3.Measuring; 4.Storage.

1. Prepare

The detailed steps for preparation are as follows:

1).Long press the power button to power on Oscar Trek.

2).Use NFC or Bluetooth to establish communication between the Android controller and Oscar Trek.

3).Configure Oscar Trek to work in rover mode using the NUWA app.

Figure 1.1 Connect Trek via Bluetooth

Figure 1.2 Rover setting interface

4).Click [Visual Positioning], follow the text prompt and choose the Wi-Fi of Oscar-Trek.

Figure 1.3 Visual Positioning interface

Figure 1.4 Connect Wi-Fi

Note:

- Rover configuration has different data link selections, including Internal Radio, Receiver Network, and PDA Network.
- The Receiver Network and PDA Network have three protocol options respectively: Ntrip, TCP and Tersus Caster Service (TCS).
- ◇ Select PDA Network when using a cellular network of a PDA such as TC80 Controller.
- \diamondsuit Select Receiver Network, you need to insert a nano SIM card into Oscar Trek GNSS receiver.
- ♦ Select Internal Radio, you need to install a 410-470MHz radio whip antenna.
- Ensure that fixed solutions are available after configuring the rover mode.

2. Initialization

Click [Back]-[Visual Positioning], and follow the animated prompts to complete IMU initialization.

Figure 2.1 Start initialization

The initialization is a two-stage process, shaking and moving.

Figure 2.2 Initialization-shaking

Figure 2.3 Initialization-moving

After the camera indicator in the upper right corner turns to green

, users can still continue the moving initialization process to achieve bettor performance.

Figure 2.4 Lower 3D value

Above all, the initialization is completed.

Note:

- Ensure that the Oscar Trek is located in an open sky environment, without any obstruction to the GNSS antenna, throughout the initialization process.
- Remember not to rotate the receiver violently during the initialization process. To improve visual measurement performance, focus on ensuring sufficient moving, as rotation does not enhance it.
- During the initialization phase, the camera should be turned back toward the surveyor to avoid obstruction of the view by their body.
- In the moving stage, the camera should not be pointed at non-textured objects, such as the sky and white walls.
- 3D values in the upper right corner indicates the predicted 3D measuring error at 6 meter distance.

3. Measuring

The detailed steps of measuring are as follows:

1).Click [Start Vision] to start capturing images. Make sure the target can be observed by multiple views.

Figure 3.1 Start Vision

2).Click [Stop] to end capturing

Figure 3.2 Stop vision

3).Click [Photos] to start measuring points from captured images.

4). Choose a image and then select feature points to measure.

Figure 3.3 Photos

Note:

Figure 3.4 Measure

- Hold the receiver steady and keep a normal walking speed while capturing images.
- For optimal accuracy and performance, capture the object of interest from a distance between 2m and 10m.
- Avoid using it in dark conditions or when directly facing the sun, as it may lead to difficulty in recognizing enough features in the captured images to make a match.
- Try to select feature points on an image directly in front of the target object. For example, choose an image in the middle of the captured images.
- \Diamond Multiple feature points can be selected at a time.

4.Storage

Click [Store], save the points and modify point name.

Figure 4.1 Store and modify point name

Figure 4.2 Stored

Click [Point], access the point store and check the detail.

Figure 4.3 Point

Survey Point			Control Point		Staking Point	
34 features						Multiselec
Name	Point Type	Code	N(m)	E(m)	h(m)	Lat
vjwaii i_vuo	Detail	NUISIUN	3432202.0001	20444-3062	10.9027	31.14010341
(V)wall1_V06	Detail	VISION	3452202.9225	56494.5193	15.8472	31.19010603
(V)test_V01	Detail	VISION	3452202.6769	56494.5683	17.1457	31.19010381
(V)test_V02	Detail	VISION	3452203.0279	56497.2156	17.1412	31.19010685
(V)test_V03	Detail	VISION	3452202.3435	56493.9665	19.9968	31.19010083
(V)test_V04	Detail	VISION	3452203.0938	56495.5502	20.4637	31.19010752

Figure 4.4 Survey Point

		F. ()
Name	test_V01 Code	VISION
N(m)		3452202.6769
E(m)		56494.5683
h(m)		17.1457
Lat		31.190103815N
Lon		121.592713913E
Height(m)		17.1457
ECEF-X(m)		-2860958.6024
-	ок	-
		m ~
← Detail		F. (2)
Antenna Height(Not Corre	ected)	1.8000
	ected)	
Antenna Height(Not Corre	ncted)	1.8000
Antenna Height(Not Corre Antenna Type	ncted)	1.8000 OSCAR
Antenna Height(Not Corre Antenna Type Survey Method	xcted)	1.8000 OSCAR
Antenna Height(Not Corre Antenna Type Survey Method		1.8000 OSCAR

Above all, the storage is completed.

Tersus GNSS Inc. Right to the Point

Get More

This Quick Start Guide briefly introduces the visual positioning for Oscar Trek GNSS Receiver. More details please refer to User Manual of Oscar Trek GNSS Receiver which can be downloaded from Tersus official website:

https://www.tersus-gnss.com/product/oscar_trek_gnss_receiver

Exemption of Liability

Before using this product, please be sure to read the product manual carefully, which helps you to better use the product. Tersus is not liable for damages caused by failure to follow the instructions in the manual.

Tersus is committed to continually improving product features and performance, and the contents of subsequent product manuals are subject to change without notice. If the pictures and icons in the manual are different with actual product, please refer to the actual product.

Technical Support

Thank you for using Tersus products. If you have any technical questions for the products, please contact us at support@tersus-gnss.com or log a ticket in our tracking system: https://tersus.supportsystem.com/ and we will serve you promptly.

Copyright ©2024 Tersus GNSS Inc. All rights reserved.